How to Refine Polynomial Functions
نویسنده
چکیده
Refinable functions are functions that are in a sense self-similar: If you add shrunken translates of a refinable function in a weighted way, then you obtain that refinable function again. For instance, see Figure 1 for how a quadratic B-spline can be decomposed into four small B-splines and how the so called Daubechies-2 generator function is decomposed into four small variants of itself. All B-splines with successive integral nodes are refinable, but there are many more refinable functions that did not have names before the rise of the theory of refinable functions. In fact we can derive a refinable function from the weights of the linear combination in the refinement under some conditions. Refinable functions were introduced in order to develop a theory of real wavelet functions that complements the discrete sub-band coding theory. Following the requirements of wavelet applications, existing literature on wavelets focuses on refinable functions that are L2-integrable and thus have a well-defined Fourier transform, are localized (finite variance) or even better of compact support. It is already known, that polynomial functions are refinable as well. In this paper we want to explore in detail the connection between polynomials and the respective weights for refinement. Our results can be summarized as follows:
منابع مشابه
Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha
In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this class.
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملFaber polynomial coefficient estimates for bi-univalent functions defined by subordinations
A function is said to be bi-univalent on the open unit disk D if both the function and its inverse are univalent in D. Not much is known about the behavior of the classes of bi-univalent functions let alone about their coefficients. In this paper we use the Faber polynomial expansions to find coefficient estimates for four well-known classes of bi-univalent functions which are defined by subord...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJWMIP
دوره 10 شماره
صفحات -
تاریخ انتشار 2012